ارزیابی راهبردهای پویای شرکت‌های فناورانه دانشگاهی

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه صنعتی امیرکبیر، دانشکده مهندسی صنایع و مدیریت سیستم‌ها

2 پژوهشکده آماد، دانشگاه عالی دفاع ملی و تحقیقات راهبردی

چکیده

در محیط رقابتی امروز، پیچیدگی‌های زیادی برای سازمان‌های مختلف ایجاد شده است. از‌این‌رو تحلیل و در نظرگیری این پیچیدگی‌ها در تصمیم‌گیری‌های راهبردی با استفاده از روش‌های مختلف شبیه‌سازی سیستمی انجام می‌شود. هدف این مقاله ارزیابی راهبردهای منتخب برای یک شرکت فناورانه دانشگاهی با استفاده از شبیه‌سازی پویایی‌های سیستم است. باتوجه به روش‌شناسی پژوهش می‌توان این پژوهش را از نظر پارادایم تفسیری، نوع هدف کاربردی، روش پژوهش توصیفی، رویکرد ترکیبی (کمی و کیفی)، گردآوری داده‌های کتابخانه‌ای و میدانی دسته‌بندی کرد. برای طراحی مدل سیستمی مناسب در این پژوهش، ابتدا مدل‌های پویای سیستمی مختلف بررسی شدند و روابطی اولیه برای شرکت موردمطالعه پیشنهاد شد. روابط مدل اولیه طراحی‌شده با استفاده از نظرات خبرگان در چارچوب پرسشنامه‌هایی ارزیابی شد. همچنین مهم‌ترین عوامل برای بررسی خروجی‌های این شرکت نیز در پرسشنامه‌ای دیگر بررسی ‌شدند. لازم به ذکر است که پیش از توزیع پرسشنامه‌ها بین نمونه‌های جمعیتی شناسایی‌شده در این شرکت، روایی و پایایی پرسشنامه‌ها براساس روش‌های لاوشه و آلفای کرونباخ بررسی شد. براساس نتایج مراحل ذکرشده، مدل پویای سیستم برای این شرکت طراحی و اعتبارسنجی آن در ابعاد مختلف بررسی شد. اثرات طرح‌های راهبردی منتخب بر مدل طراحی‌شده باتوجه به مهم‌ترین معیارهای شناسایی‌شده برای این شرکت مشخص شد. باتوجه به نتایج، هر معیار در بازه‌های زمانی مختلف نوسان‌های مختلفی دارد که اعمال هر راهبرد موجب تغییر در نوسان‌ها می‌شود. لذا انتخاب راهبرد باتوجه به اهمیت هرمعیار از دیدگاه مدیران شرکت موردمطالعه و بازه‌های زمانی متفاوت انجام شد و اثربخش‌ترین راهبرد بین راهبردهای منتخب برای این شرکت معرفی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Dynamics Strategies in a University Technology Companies Approach

نویسندگان [English]

  • Mohammad Mahdi Ershadi 1
  • Hanif Kazerooni 2
1 No. 350, Hafez Ave, Valiasr Square, Tehran, Iran
2
چکیده [English]

Aim and introduction: In today's competitive environment, many complexities have been created for different organizations. On the other hand, many sciences affect and affect human health, including pharmacy, therapeutic fields, and related technologies that can affect individual human health and general health due to changes in societies. Companies operating in this field will inevitably face many complexities. Therefore, the analysis and consideration of these complexities in strategic decision-making are done using various systems simulation methods in successful companies. The purpose of this paper is to evaluate the selected strategies for an academic technology company using simulations of system dynamics.
Methodology: This research was categorized in terms of interpretive paradigm, type of applied purpose, descriptive research method, combined approach (quantitative and qualitative), and collection of library and field information. To design an appropriate system model in this study, different dynamic system models were investigated and initial relationships were proposed for the case study. The relationships of the designed initial model were assessed using expert opinions in the framework of questionnaires. Also, the most important factors for examining the outputs of this company were examined in other questionnaires. It should be noted that before distributing the questionnaires among the demographic samples identified in this company, the validity and reliability of the questionnaires were evaluated based on Lauche and Cronbach's alpha methods. The focus of the field research used in this paper is on identifying relationships in business models using questionnaires, interviews, and content analysis. It is noteworthy that Vensim software was used to design the models of this article and SPSS software was used to examine the statistical metrics related to the questionnaires.
Findings: In this paper, the initial model was designed by ​​examining the dynamics models of the system in different fields. This model was adjusted and redesigned for a case study based on the opinions of its experts. The final model was reviewed in terms of model boundary, model structure, proportionality, limit status, and reproduction of behavior based on the data and information of the company under study 10 years ago, and the issues that reduce the validity of the model were identified and corrected. Based on the results obtained from the mentioned steps, the dynamic system model for this company was designed and its validation in different dimensions was examined. Finally, the proposed model was able to show good performance according to information from a few years ago. Also, based on field studies in the company under the determined case study, appropriate output indicators were extracted as key criteria for evaluating the proposed strategies.
Discussion and conclusions: The effects of the selected strategic plans on the designed model were determined according to the most important criteria identified for this company based on the final results and the determined relationships. According to these results, each criterion has different fluctuations in different periods and the application of each strategy causes different changes in the fluctuations. Therefore, the strategy for different periods was selected according to the importance of each criterion from the perspective of the company’s managers in the case study. Then, the most effective strategy among the selected strategies for this company was introduced. The results showed that the best strategy can be different based on each criterion and each planning horizon; Therefore, the company must choose the best strategy based on the importance of each criterion in different time horizons. These results illustrate the complex nature of the organization in today's markets and the various sensitivities created based on each output metric. According to the research findings, there are sensitivities in the effectiveness of each strategy according to the output criteria, expert opinions, and different planning horizons, and their proper modeling with system dynamics can provide a good solution considering the existing complexities.
 

کلیدواژه‌ها [English]

  • Strategies
  • System Modeling
  • Validation
  • Output Criteria
  1. Arghode, V., Jandu, N., & McLean, G. N. (2020). Exploring the connection between organizations and organisms in dealing with change. European Journal of Training and Development.
  2. Baghestani, A. R., Ahmadi, F., Tanha, A., & Meshkat, M. (2019). Bayesian critical values for Lawshe's content validity ratio. Measurement and Evaluation in Counseling and Development, 52(1), 69-73.
  3. Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review: The Journal of the System Dynamics Society, 12(3), 183-210.
  4. Cochran, W. G. (2007). Sampling techniques. John Wiley & Sons.
  5. Cosenz, F. (2017). Supporting start-up business model design through system dynamics modelling. Management Decision.
  6. Csaszar, F. A., & Ostler, J. (2020). A contingency theory of representational complexity in organizations. Organization Science.
  7. Dangelico, R. M., Garavelli, A. C., & Petruzzelli, A. M. (2010). A system dynamics model to analyze technology districts’ evolution in a knowledge-based perspective. Technovation, 30(2), 142-153.
  8. Ershadi, M. M., & Shemirani, H. S. (2020). Simulation and optimization for improving performance of maintenance. Facilities.
  9. Espinoza, A., Bautista, S., Narváez, P. C., Alfaro, M., & Camargo, M. (2017). Sustainability assessment to support governmental biodiesel policy in Colombia: A system dynamics model. Journal of Cleaner Production, 141, 1145-1163.
  10. Gholizad, A., Ahmadi, L., Hassannayebi, E., Memarpour, M., & Shakibayifar, M. (2017). A system dynamics model for the analysis of the deregulation in electricity market. International Journal of System Dynamics Applications (IJSDA), 6(2), 1-30.
  11. Hamidizadeh, Mohammad Reza(2015). System dynamics, Tehran: Shahid Behshti University Pub.
  12. Janošková, M., Csikósová, A., & Čulková, K. (2018). Measurement of company performance as part of its strategic management. In Managerial strategies for business sustainability during turbulent times, 309-335. IGI Global.
  13. Kelly, C., Onat, N. C., & Tatari, O. (2019). Water and carbon footprint reduction potential of renewable energy in the United States: A policy analysis using system dynamics. Journal of Cleaner Production, 228, 910-926.
  14. Li, M., Li, G., Huang, Y., & Deng, L. (2017). Research on investment risk management of Chinese prefabricated construction projects based on a system dynamics model. Buildings, 7(3), 83.
  15. Liu, D., & Xiao, B. (2018). Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecological Indicators, 93, 647-657.
  16. Martinez‐Moyano, I. J., & Richardson, G. P. (2013). Best practices in system dynamics modeling. System Dynamics Review, 29(2), 102-123.
  17. Morcillo, J. D., Franco, C. J., & Angulo, F. (2018). Simulation of demand growth scenarios in the Colombian electricity market: An integration of system dynamics and dynamic systems. Applied Energy, 216, 504-520.
  18. Morshedi, M. A., & Kashani, H. (2020). A system dynamics model to evaluate the housing market response to vulnerability reduction promotion policies. International journal of disaster risk reduction, 44, 101438.
  19. Quirynen, R. (2017). Numerical simulation methods for embedded optimization.
  20. Rafieisakhaei, M., Barazandeh, B., & Afra, S. (2017, March). A system dynamics approach on oil market modeling with statistical data analysis. In SPE Middle East Oil & Gas Show and Conference. Society of Petroleum Engineers.
  21. Rafieisakhaei, M., Barazandeh, B., Moosavi, A., Fekri, M., & Bastani, K. (2016). Supply and demand dynamics of the oil market: A system dynamics approach. In The 34rd International Conference of the System Dynamics Society.
  22. Rahimi Rise, Z., Ershadi, M. M., & Shahabi Haghighi, S. (2020). Scenario-Based Analysis about COVID-19 Outbreak in Iran using Systematic Dynamics Modeling-with a Focus on the Transportation System. Journal of Transportation Research.
  23. Saini, S., & Singh, R. (2018). Service quality assessment of utility company in Haryana using SERVQUAL model. Asian Journal of Management, 9(1), 702-708.
  24. Samara, E., Georgiadis, P., & Bakouros, I. (2012). The impact of innovation policies on the performance of national innovation systems: A system dynamics analysis. Technovation, 32(11), 624-638.
  25. Skulimowski, A. M. (2011, October). Discovering complex system dynamics with intelligent data retrieval tools. In International Conference on Intelligent Science and Intelligent Data Engineering, 614-626. Springer, Berlin, Heidelberg.
  26. Sun, H., Wan, Y., & Lv, H. (2020). System Dynamics Model for the Evolutionary Behaviour of Government Enterprises and Consumers in China’s New Energy Vehicle Market. Sustainability, 12(4), 1578.
  27. Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273-1296.
  28. Thirupathi, R. M., Vinodh, S., & Dhanasekaran, S. (2019). Application of system dynamics modelling for a sustainable manufacturing system of an Indian automotive component manufacturing organisation: A case study. Clean Technologies and Environmental Policy, 21(5), 1055-1071.
  29. Tsai, J. M., & Hung, S. W. (2014). A novel model of technology diffusion: System dynamics perspective for cloud computing. Journal of Engineering and Technology Management, 33, 47-62.
  30. Wilson, D. S., & Kirman, A. (Eds.). (2016). Complexity and evolution: Toward a new synthesis for economics (Vol. 19). MIT Press.
  31. Xiao, S., Dong, H., Geng, Y., Tian, X., Liu, C., & Li, H. (2020). Policy impacts on Municipal Solid Waste management in Shanghai: A system dynamics model analysis. Journal of Cleaner Production, 121366.
  32. Yunna, W., Kaifeng, C., Yisheng, Y., & Tiantian, F. (2015). A system dynamics analysis of technology, cost and policy that affect the market competition of shale gas in China. Renewable and Sustainable Energy Reviews, 45, 235-243.

Zhu, C., Fan, R., & Lin, J. (2020). The impact of renewable portfolio standard on retail electricity market: A system dynamics model of tripartite evolutionary game. Energy Policy, 136, 111072.