تبیین و ارزیابی الگوی ارتقای بهره‌گیری از سیستم‌های اطلاعاتی

نوع مقاله: علمی-

نویسندگان

1 دانشیار، دانشگاه شهید بهشتی، تهران

2 دانشجوی دکتری، موسسه عالی آموزش و پژوهش مدیریت و برنامه ریزی

چکیده

پژوهش حاضر در پی طراحی و ارزیابی الگویی برای افزایش بهره­‌گیری کارکنان از سیستم­‌های اطلاعاتی مدیریت به کمک مدل پذیرش تکنولوژی (TAM) است. در این راستا و با بهره­‌گیری از تحقیقات قبلی انجام شده در این زمینه، سه عامل سازمانی شامل پشتیبانی زیرساخت­‌های IT، پشتیبانی مدیریت و پشتیبانی فنی شناسایی شد. این پژوهش از نوع کمّی- غیر آزمایشی بوده و جامعة آماری آن، کارکنان شعب بانک سرمایه در شهر تهران بودند. ابزار جمع‌­آوری اطلاعات، پرسشنامه بود. تعداد 167 پرسشنامه قابل استفاده جمع‌­آوری شد. عوامل سازمانی پیش­‌گفته، متغیرهای مستقل مدل پژوهش و دو متغیر اصلی تشکیل­‌دهندة TAM شامل درک از سودمندی و درک از سهولت استفاده، متغیرهای میانجی و بهره‌­گیری از سیستم اطلاعاتی، متغیر وابسته بودند. نتایج مدل‌سازی معادلات ساختاری حاکی از تأثیر مثبت متغیرهای تشکیل­‌دهنده TAM بر بهره­‌گیری از سیستم اطلاعاتی بود. همچنین از میان متغیرهای مستقل یاد­ شده تنها وجود رابطه میان پشتیبانی مدیریت و بهره‌گیری از سیستم به‌­تأیید نرسید.

کلیدواژه‌ها


عنوان مقاله [English]

Explanation and Evaluation of a Model for Enhancing the Use of Information Systems

نویسندگان [English]

  • Jalil Lajevardi 1
  • Mohammad Khosravi Balalami 2
1 Associate Professor, Shahid Beheshti University, Tehran
2 PhD student, Institute for Management and Planning Studies.
چکیده [English]

The current research is seeking to design and evaluate a model for enhancing the employees' use of management information systems, using Technology Acceptance Model (TAM). In this regard, getting help from the prior research done in this field, three organizational factors including IT infrastructure support, Management support and Technical support were identified. This research is of quantitative non-experimental type and its population is Sarmayeh Bank’s employees of Tehran branches. A questionnaire was used to gather information. 167 usable questionnaires were returned. The aforementioned organizational factors were independent variables, while TAM’s two main constituent components including Perceived usefulness and Perceived ease of use were mediating variables, and Use of information system was the dependent variable. Results of Structural Equation Modeling supported the positive effect of TAM’s constituent variables on the Use of information system. Among the three mentioned independent variables only the relationship between Management support and the Use of system was not supported.

کلیدواژه‌ها [English]

  • Information technology
  • Information systems
  • Technology Acceptance Model
  • Sarmayeh Bank
 

1. زرگر، محمود (1382). اصول و مفاهیم فناوری اطلاعات، انتشارات بهینه، تهران.

2. سرلک، محمدعلی و فراتی، حسن (1387). سیستم­های اطلاعات مدیریت پیشرفته، انتشارات دانشگاه پیام نور، تهران.

3. فراهی، احمد؛ عسکرزاده، حسن و آیت، سید ناصر (1386). مقدمه­ای بر سیستم­های اطلاعات مدیریت (MIS انتشارات دانشگاه پیام نور، تهران.

4. فصیحی هرندی، فریبا (1381). سیستم اطلاعات در سازمان، اولین همایش ملی مدیریت فناوری اطلاعات.

5. Almeida, F., & Sobral, F. (2009). The psychological and structural determinants of technology integration in organizations: an empirical study. Management Research: The Journal of the Iberoamerican Academy of Management, 7(1), 61-74.

6. Almutairi, H. (2007). Is theTechnology Acceptance Model'Universally Applicable?: The Case of the Kuwaiti Ministries. Journal of Global Information Technology Management, 10(2), 57.

7. Alshare, K. A., & Alkhateeb, F. B. (2008). Predicting students usage of Internet in two emerging economies using an extended technology acceptance model (TAM). Academy of Educational Leadership Journal, 12(2), 109-128.

8. Bhattacherjee, A., & Hikmet, N. (2008). Reconceptualizing organizational support and its effect on information technology usage: evidence from the health care sector. Journal of Computer Information Systems, 48(4), 69-76.

9. Broadbent, M., Weill, P., & St. Clair, D. (1999). The implications of information technology infrastructure for business process redesign. MIS quarterly, 159-182.

10. Byrd, T. A., Pitts, J. P., Adrian, A. M., & Davidson, N. W. (2008). Examination of a path model relating information technology infrastructure with firm performance. Journal of Business Logistics, 29(2), 161-187.

11. Chanopas, A., & Krairit, D. (2006). Managing information technology infrastructure: a new flexibility framework. Management Research News, 29(10), 632-651.

12. Chatzoglou, P. D., Sarigiannidis, L., Vraimaki, E., & Diamantidis, A. (2009). Investigating Greek employees’ intention to use web-based training. Computers & Education, 53(3), 877-889.

13. Chen, H.-R., & Tseng, H.-F. (2012). Factors that influence acceptance of web-based e-learning systems for the in-service education of junior high school teachers in Taiwan. Evaluation and program planning, 35(3), 398-406.

14. Chen, O., Chen, H., & Kazman, R. (2007). Investigating antecedents of technology acceptance of initial eCRM users beyond generation X and the role of self-construal. Electronic Commerce Research, 7(3-4), 315-339.

15. Cooper, R. B., & Zmud, R. W. (1990). Information technology implementation research: a technological diffusion approach. Management Science, 36(2), 123-139.

16. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.

17. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.

18. Davis, G. (1974). Management Information Systems: Conceptual foundations, Structure and Development. New York: McGraw-Hill.

19. Davis, R., & Wong, D. (2007). Conceptualizing and measuring the optimal experience of the eLearning environment*. Decision Sciences Journal of Innovative Education, 5(1), 97-126.

20. Fusilier, M., & Durlabhji, S. (2005). An exploration of student internet use in India: the technology acceptance model and the theory of planned behaviour. Campus-Wide Information Systems, 22(4), 233-246.

21. Heintze, T., & Bretschneider, S. (2000). Information technology and restructuring in public organizations: does adoption of information technology affect organizational structures, communications, and decision making? Journal of Public Administration Research and Theory, 10(4), 801-830.

22. Igbaria, M. (1993). User acceptance of microcomputer technology: an empirical test. Omega, 21(1), 73-90.

23. Igbaria, M., Guimaraes, T., & Davis, G. B. (1995). Testing the determinants of microcomputer usage via a structural equation model. Journal of Management Information Systems, 11(4), 87-114.

24. Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. L. (1997). Personal computing acceptance factors in small firms: a structural equation model. MIS quarterly, 279-305.

25. Jasperson, J. S., Carter, P. E., & Zmud, R. W. (2005). A comprehensive conceptualization of post-adoptive behaviors associated with information technology enabled work systems. MIS quarterly, 29(3), 525-557.

26. Karake, Z. A. (1994). A study of information technology structure: firm ownership and managerial characteristics. Information Management & computer security, 2(5), 21-30.

27. Kim, B. G., Park, S. C., & Lee, K. J. (2008). A structural equation modeling of the Internet acceptance in Korea. Electronic Commerce Research and Applications, 6(4), 425-432.

28. Kim, D. R., Kim, B. G., Aiken, M. W., & Park, S. P. (2006). The influence of individual, task, organizational support, and subjective norm factors on the adoption of groupware. Academy of Information and Management Sciences Journal, 9(2), 93-110.

29. Laudon, K. C., & Laudon, J. P. (2007). Management Information Systems (10th ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall.

30. Laudon, K. C., & Laudon, J. P. (2010). Management Information Systems: Managing the Digital Firm (11th ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall.

31. Laudon, K. C., & Laudon, J. P. (2011). Management Information Systems: Managing the Digital Firm (12th ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall.

32. Lee, D. Y., & Lehto, M. R. (2013). User acceptance of YouTube for procedural learning: an extension of the technology acceptance model. Computers & Education, 61, 193-208.

33. Lewis, B. R., & Byrd, T. A. (2003). Development of a measure for the information technology infrastructure construct. European Journal of Information Systems, 12(2), 93-109.

34. Lin, F.-H., & Wu, J.-H. (2004). An empirical study of end-user computing acceptance factors in small and medium enterprises in Taiwan: Analyzed by structural equation modeling. Journal of Computer Information Systems, 44(3), 98-108.

35. Lippert, S. K., & Volkmar, J. A. (2007). Cultural effects on technology performance and utilization: a comparison of US and Canadian users. Journal of Global Information Management (JGIM), 15(2), 56-90.

36. Lucas Jr, H. C. (1978). Empirical evidence for a descriptive model of implementation. MIS quarterly, 27-42.

37. Mercarder, J. R., Cerdan, A. L., & Sanchez, R. S. (2006). Information technology and learning: Their relationship and impact on organisational performance in small businesses. International Journal of Information Management, 26(1), 16-29.

38. Nguyen, T. H. (2009). Information technology adoption in SMEs: an integrated framework. International Journal of Entrepreneurial Behaviour & Research, 15(2), 162-186.

39. Ragu-Nathan, B. S., Apigian, C. H., Ragu-Nathan, T., & Tu, Q. (2004). A path analytic study of the effect of top management support for information systems performance. Omega, 32(6), 459-471.

40. Roberts, S. C., Ghazizadeh, M., & Lee, J. D. (2012). Warn me now or inform me later: Drivers' acceptance of real-time and post-drive distraction mitigation systems. International journal of human-computer studies, 70(12), 967-979.

41. Rouibah, K. (2008). Social usage of instant messaging by individuals outside the workplace in Kuwait: a structural equation model. Information Technology & People, 21(1), 34-68.

42. Schillewaert, N., Ahearne, M. J., Frambach, R. T., & Moenaert, R. K. (2005). The adoption of information technology in the sales force. Industrial Marketing Management, 34(4), 323-336.

43. Suh, B., & Han, I. (2003). Effect of trust on customer acceptance of Internet banking. Electronic Commerce Research and Applications, 1(3), 247-263.

44. Terzis, V., Moridis, C. N., & Economides, A. A. (2012). The effect of emotional feedback on behavioral intention to use computer based assessment. Computers & Education, 59(2), 710-721.

45. Van Raaij, E. M., & Schepers, J. J. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838-852.

46. Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365.

47. Walker, G. (2005). Faculty intentions to use Web enhanced instructional components. Available from ProQuest Dissertations and Thesis database. (UMI No. 3150454).

48. Walker, G., & Johnson, N. (2008). Faculty intentions to use components for web-enhanced instruction. International Journal on E-learning, 7(1), 133-152.