ارائه مدل ریاضی برای اولویت‌بندی پروژه‌های فناوری پیشرفته

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشگاه شاهد تهران

2 استادیار، دانشگاه شاهد تهران

3 دانشیار، دانشگاه شاهد تهران

چکیده

اهمیت انتخاب صحیح پروژه‌های فناوری پیشرفته، اهمیت توسعه پایدار در برنامه‌های استراتژیک سازمان‌های مجری این گونه پروژه‌ها، تأثیر چشم‌گیر این فناوری در تمامی ابعاد و ارتقا کیفیت زندگی بشری و عدم قطعیت بالا در محیط این‌گونه پروژه‌ها، دلیل پرداختن به این پژوهش است. با بررسی مبانی نظری و پیشینه تحقیق، اولویت‌بندی پروژه‌های فناوری پیشرفته بر اساس شاخص‌های سرمایه انسانی، نوآوری، دستاورد تجاری طرح، بازدهی اقتصادی، سطح تأثیرگذاری ملی و مزیت رقابتی، کیفیت، سطح تقاضا، قابلیت اطمینان و برنامه‌های استراتژیک و هزینه‌های پروژه در نظر گرفته شد. پس از بررسی مدل‌‌‌ها و روش‌های اولویت‌بندی و انتخاب ان نوع پروژه‌ها، مدل ساختار ترجیحی بازده به مقیاس متغیر خروجی محور در رویکرد تحلیل پوششی داده‌‌‌ها به‌عنوان جامع‌ترین مدل در این زمینه انتخاب شد. با استفاده از فرآیند تحلیل سلسله مراتبی فازی مهم‌ترین شاخص‌‌‌ها وزن دهی و رتبه‌بندی شدند. در نتیجه اجرای مدل ساختار ترجیحی بازده به مقیاس متغیر خروجی محور، از بین 30 پروژه ستاد ویژه توسعه فناوری نانو 67/46٪ از پروژه‌‌‌ها اولویت‌دارترین پروژه‌‌‌ها و مناسب سرمایه‌گذاری تشخیص داده شده و پیشنهاد شده‌اند. پروژه‌های 19 و 28 و 7 به ترتیب اولویت اول تا سوم برای اجرا بوده‌اند. پروژه در اولویت‌های آخر هم می‌توانند با توجه به الگو قرار دادن مجموعه مرجع مشخص شده، خود را به اولویت‌های اول جهت اجرایی شدن برسانند.

کلیدواژه‌ها


عنوان مقاله [English]

An integrated mathematical framework for prioritizing high technology projects

نویسندگان [English]

  • elaheh bararinia 1
  • reza abbasi 2
  • Saeed Safari 3
1 shahed of tehran
2 facutally member, shahed
3 Shahed University
چکیده [English]

Objective: The importance of the correct selection of advanced technology projects, the importance of sustainable development in the strategic plans of the implementing organizations of such projects, the impressive impact of this technology in all aspects, and the improvement of the quality of human life and the high uncertainty in the environment of such projects, the reason is for addressing this research.
Methods: By reviewing the literature and research background, prioritizing high technology projects based on human capital criteria, innovation, project business achievement, economic returns, national influence levels and competitive advantage, quality, demand level, reliability and strategic plans, and project costs Was considered.After reviewing the models and prioritization methods and choosing the type of projects, the preferred structure of output-to-scale output efficiency model was selected in the data envelopment analysis approach as the most comprehensive model in this field. By using the fuzzy hierarchy process analysis, the most important criteria were weighted and ranked.
Results: As a result of the implementation of the preferred cost-benefit model of output to output-oriented output scale, among the 30 projects of the Nanotechnology Development Specialized Headquarters, 46.67% of the projects have been identified as the most priority projects and suitable for investment.
Conclusion: Projects 19, 28, and 7 were the first to third priorities respectively. The projects in the final priorities can according to the template of the specified reference set, become the first priorities for implementation.

کلیدواژه‌ها [English]

  • prioritization of projects
  • High Technology
  • DEA
  • Fuzzy logic
  • multi-criteria decision
  1. Ahmadi, A,. & Samankhah, A. (2003). Mathematical optimization and selection of research and development projects, fourth conference of industries and mines research and development centers. Industry and Mines Research and Development Centers Association.
  2. Alinejad, A., & Simyari, K. (2013). Optimal project portfolio selection using DEA/DEMATEL integrated approach, Journal of Industrial Management Studies, Year 11. No. 28.
  3. Camila, C. D., José Luis, D. R., Monteiro De Carvalho M. ( 2013). An economic–probabilistic model for project selection, international journal of project management.
  4. Carazo, A. F., Gómez, T., Molina, J., Hernández-Díaz, A. G., Guerrero, F. M., & Caballero, R. (2010). Solving a comprehensive model for multiobjective project portfolio selection. Computers & operations research، 37(4)، 630-639.
  5. Cooper, R. G., Edgett, S. J., & Kleinschmidt, E. J. (1998). Best practices for managing R&D portfolios. Research technology management, 41(4).
  6. Dia, M. (2009). A portfolio selection methodology based on data envelopment analysis. INFOR: Information Systems and Operational Research, 47(1), 71-79.
  7. Fátima, P. & Caballero, R., Carazo, A. F., Gómez, T., & Liern, V. (2015). A multiobjective fuzzy model for selecting and planning a project portfolio in a public organization, Int. J. Engineering Management and Economics, Vol. 5, Nos.
  8. Fazli S., & Madani, S. (2013). Project selection based on optimal resource allocation using a combined approach of network analysis process and ideal planning. Sharif Journal of Industrial Engineering and Management, Vol.1-1, Issue 1), page 99-111.
  9. Gregoriou, G. N., & Zhu, J. (2007). Data envelopment analysis. The Journal of Portfolio Management, 33(2), 120-132.
  10. Haji Agha Bozorgi, A., Salambakhsh, A., & Rezaei, I. (2008). Optimization in project portfolio prioritization using mathematical planning approach, fourth international project management conference, Tehran, Ariana Research Group.
  11. Jafarzadeh, M., Tareghian, H. R., Rahbarnia, F., & Ghanbari, R. (2015). Optimal selection of project portfolios using reinvestment strategy within a flexible time.
  12. Khalil, T. (2012). Technology management: the secret of success in competition and creation of wealth, Translated by Seyyed Kamran Bagheri. Tehran: Text Message.
  13. Malekifar, & Aghili, (2000). Fundamentals of technology and technology transfer, Airlines Organization, p. 112.
  14. Mehrgan, M. (2017). Quantitative models in organizational performance evaluation (Data envelopment analysis), University of Tehran.
  15. Mohaghar A., & Amin Naseri, M. R. (2001). Determining and explaining the evaluation indicators of islamic consultative assembly decisions, Modares Journal, Volume 5, Number (2), pp 155-177.
  16. Moradi, Sh., & Hassanpour, H. A. (2015). Selection and prioritization and optimization of engineering projects portfolio based on linear programming (Case Study: Taha Consulting Engineers Institute), First National Congress of Civil Engineering and Construction Project Evaluation , Gorgan, Golestan Province, Iran.
  17. Namdarzangeh, S., Vatankhah S., & Adeli Koodi F. (2014). Selection of the most economical project using delphi method, dynamic ranking method and ideal planning, Journal of Industrial Management: Fall 2013, Volume 8, Number (25) ; From page 55 – 61.
  18. Osman, T., Abdallah, Bafail, O., Abdulaal, M.S., & Kabli, M. R. (2014). Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies, applied soft computing.
  19. Pyzdek. T. (2004). Strategy deployment using blanced scorecards; Six Sigma and Competitive advantage, Vol1,No.(1).
  20. Rafiee, M., & Kianfar, F. (2011). A scenario tree approach to multi-period project selection problem using real-option valuation method. The International Journal of Advanced Manufacturing Technology, 56(1-4), 411-420.
  21. Samantha, B., Cruz-Reyes, L., Fernandez, E., Gómez C., & Rivera, G. (2015). An ant colony algorithm for solving the selection portfolio problem, using a quality-assessment model for portfolios of projects expressed by a priority ranking, Springer International Publishing Switzerland.
  22. Tavana, M., Khalili-Damghani, K., & Sadi-Nezhad, S. (2015). A fuzzy group data envelopment analysis model for high-technology project selection: A case study at NASA. Computers & Industrial Engineering,66(1), 10-23.
  23. Wang, J., & Hwang, W. L. (2007). A fuzzy set approach for R&D portfolio selection using a real options valuation model. Omega, 35(3), 247-257.
  24. Wu, W. W. (2008). Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Systems with Applications, 35(3), 828-835.