آینده‌نگاری مبتنی بر فنون شناختی

نوع مقاله: علمی-

نویسندگان

1 دانشیار، دانشگاه علم و صنعت ایران

2 دانشجوی دکتری، دانشگاه علم و صنعت ایران

3 استادیار، پژوهشگاه ارتباطاتا و فناوری اطلاعات

چکیده

هدف این مقاله ارائه چارچوبی برای آینده‌نگاری با تمرکز بر نقش رویکردهای شناختی و ترکیب آن با مفهوم نقشة شناختی فازی است. چارچوب پیشنهادی از سه مرحلة پیش‌آینده‌نگاری، اصلی و پساآینده‌نگاری تشکیل می‌شود. در مرحلة اصلی آینده‌نگاری، به‌منظور تعیین آینده مطلوب، تمرکز محوری بر نقش تصور و شهود در ترسیم آینده در ذهن خبرگان، به‌تصویر کشیدن تصورات خبرگان در قالب یک نقشة شناختی فازی اجتماعی متأثر از متغیرهای دور و نزدیک از بافت‌های داخلی و خارجی مرتبط با موضوع است. از نقاط قوت این چارچوب می‌توان به نمایش سیر تکاملی شناخت خبرگان از موضوع آینده، از جمع‌آوری داده‌ها تا به تصویر کشیدن نقشه‌ها و تحلیل و تجمیع آن­ها، به‌منظور دستیابی به دانش و فهم درباره آینده و شکل‌گیری خرد درباره موضوع آینده اشاره نمود. این مهم با شناسایی آینده‌های محتمل و تعیین آینده مطلوب در مرحلة اصلی آینده‌نگاری چارچوب پیشنهادی، محقق می‌شود. به‌علاوه استفاده از نقشة شناختی، نقش متغیرها و توالی آن­ها در آیندة مطلوب را شفاف نموده و امکان برنامه‌ریزی متغیرهای کنترل‌پذیر برای دستیابی به آیندة مطلوب را فراهم می‌آورد. اعتبارسنجی تحقیق، با بررسی اهمیت مؤلفه‌­های چارچوب پیشنهادی براساس روش آنتروپی شانون و نیز مقایسة این چارچوب با سایر چارچوب‌های مطالعه شده براساس عوامل کلیدی و دریافت نظرات خبرگان انجام شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Foresighting Based on Cognitive Map

نویسندگان [English]

  • Mohammad Ali Shafia 1
  • Mohammad Rahimi Moghaddam 2
  • Kambiz Badie 3
1 Associate Professor, Iran University of Science and Technology
2 Ph.D. Student, Iran University of Science and Technology
3 Assistant Professor, Iran Telecommunication Research Center (ITRC).
چکیده [English]

The paper's aim is to present a foresight framework based on cognitive approaches and Fuzzy Cognitive Map (FCM). The proposed framework includes three phases of pre-foresight, main-foresight and post-foresight. One of the main strengths of this framework is its ability to present the evolutional trend of experts' cognition on future which begins from data gathering, mapping their imagination, analyzing and summarizing them to achieve knowledge and understandings of the future and ends by forming the wisdom about it. This trend helps to identify probable futures and determine preferable one. Moreover, focus on FCM in this framework clarifies the role of variables and their sequence which facilitates planning for the controllable variables to achieve preferable future. Finally the components of proposed framework are evaluated based on the frameworks reviewed and success factors of foresight frameworks.

کلیدواژه‌ها [English]

  • Foresight
  • FCM
  • intuition
  • Insight
  • wisdom
 

1. تیموری، ا. و فراهانی، م. م. (1386). مدل‌سازی شناختی مدل‌سازی سیستم‌های اقتصادی و اجتماعی (جلد اول). فصل ششم، صفحات 117-125، تهران: دانشگاه علم وصنعت ایران.

2. میرزاامینی، م. (1384). نسل چهارم آینده‌نگاری فناوری و فناوری نرم. تهران: مرکز آینده‌پژوهی علوم و فناوری دفاعی.

3. ناظمی، ا. و قدیری، ر. ا. (1388). آینده‌نگاری از مفهوم تا اجرا. تهران مرکز صنایع نوین، وزارت صنایع و معادن.

4. Ackermann, F., & Eden, C. (2001). SODA - The Principles. In J. Rosenhead & J. Mingers (Eds.), Rational Analysis for a Problematic World: Problem Structuring Methods for Complexity, Uncertainty and Conflict (2nd edition ed.,. 2, (21-42). London: Wiley.

5. Ackoff, R. L. (1989). From Data to Wisdom. Journal of Applies Systems Analysis, 16, 3-9.

6. Aguilar, J. (2005). A Survey about Fuzzy Cognitive Maps Papers (Invited Paper). International Journal of Computational Cognition, 3(2), 27-33.

7. Allen, M. J., Yen, W. M. (2002). Introduction to Measurement Theory. Long Grove, IL: Waveland Press.

8. Anderson, J. (1997). Technology Foresight for Competitive Advantage. Elsevier Science, Long Range Planning, 30(5), 665-677.

9. Axelrod, R. (1976). Structure of Decision: The Cognitive Maps of Political Elites. New Jersey: Princeton University press.

10. Azadeh, A., Ziaei, B., & Moghaddam, M. (2012). A hybrid fuzzy regression-fuzzy cognitive map algorithm for forecasting and optimization of housing market fluctuations. Expert Systems with Applications, (39), 298-315.

11. Beck, C. (2002). Mothering multiples:  A meta-synthesis of the qualitative research. MCN, The American Journal of Maternal /Child Nursing, 28(2), 93-99.

12. Bellinger, G., Castro, D., & Mills, A. (2004). Data, Information, Knowledge, and Wisdom: Systems Thinking: A journey in the realm of systems.

13. Cagnin, C., & Scapolo, F. (2007). Technical report on a foresight training course: European Communities. Retreived  from http://ftp.jrc.es/eur22737en.pdf.

14. Cetron, M. J., & Davies, O. (2005). 53 Trends Now Shaping the Future. Bethesda, Maryland 20814, U.S.A.: World Future Society.

15. Chunmei, L. (2007). Combination study of fuzzy cognitive map. International Journal of Energy and Environment, 1, 65–69.

16. Costanzo, L. A. (2004). Strategic foresight in a high-speed environment. Futures, 36, 219-235.

17. Craiger, J. P., Weiss, R. J., Goodman, D. F., & Butler, A. A. (1996). Simulating organizational behavior with fuzzy cognitive maps. International Journal of Computational Intelligence and Organizations, 1, 120–133.

18. DeCarolis, J. F. Using modeling to generate alternatives (MGA) to expand our thinking on energy futures. Energy Economics, 33(2011), 145 –152.

19. Dickerson, J. A., & Kosko, B. (1994). Virtual Worlds as Fuzzy Cognitive Maps. The Massachusetts Institute of Technology, 3(2), 173-189.

20. Gavigan, P. J., & Fabiana, S. (1999). Matching methods to the mission: A comparison of national foresight exercises. Foresight, 01(06).

21. Georghiou, L. (2003). Evaluating Foresight and Lessons for Its Future Impact. Paper presented at the 2nd international conference on technology foresight, Tokyo.

22. Georghiou, L., Harper, J. C., Keenan, M., Miles, I., & Popper, R. (2008). The Handbook of Technology Foresight: Concepts and Practice: Edward Elgar Publishing Limited.

23. Glenn, J. C., & Gordon, T. J. (2009). Chapter 25: Genius Forecasting, Intuition, and Vision Futures Research Methodology (3.0 ed.): The Millennium Project, with support from the Rochefeller Foundation.

24. Hans-Horst, S., & Jetter, A. J. M. (2003). Integrating Market and Technological Knowledge in the Fuzzy Front End: An FCM-Based Action Support System. International Journal of Technology Management, 26(5-6), 517-539.

25. Harary, F., Norman, R. Z., & Cartwright, D. (1965). Structural Models: An Introduction to the Theory of Directed Graphs. New York: John Wiley & Sons.

26. Havas, A. (2003). Socio-Economic and Developmental Needs: Focus of Foresight Programmes. Paper presented at the UNIDO workshop on Implementation of the Regional Programme on Technology Foresight for CEE/NIS, Ankara, Turkey.

27. Hodges, J. S., & Dewar, J. A. (1992). Is It You or Your Model Talking? A Framework for Model Validation. Santa Monica CA: RAND.

28. Horton, A. (1999). Forefront: a simple guide to successful foresight. Foresight, 1(1), 5-9.

29. Jetter, A., & Schweinfort, W. (2011). Building Scenarios with Fuzzy Cognitive Maps: An Exploratory Study of Solar Energy. Futures, 43, 52–66.

30. Jetter, A. J. M. (2003). Educating the Guess: Strategies, Concepts, and Tools for the Fuzzy Front End of Product Development. Paper presented at the PICMET, Portland, Oregon.

31. Kandasamy, W. B. V., & Smarandache, F. (2003). Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps. Madras, Chennai, India: Indian Institute of Technology.

32. Keenan, M. (2003, 8-12 December 2003). Technology Foresight: An Introduction. Paper presented at the Technology Foresight for Organizers, Ankara, Turkey.

33. Ketmanee, A., & Denis, L. (2001). Shaping Thailand’s IT future trough technology foresight. Journal of Future Studies, Strategic Thinking and Policy, 3(5), 467-473.

34. Khan, M., & Quaddus, M. (2004). Group Decision Support using Fuzzy Cognitive Maps for Causal Reasoning. Group Decision and Negotiation Journal, 13(5), 463-480.

35. Khan, M. S., & Chong, A. (2003). Fuzzy Cognitive Map Analysis with Genetic Algorithm. Paper presented at the 1st Indian International Conference on Artificial Intelligence (IICAI-03).

36. Khan, M. S., & Khor, S. W. (2004). A Framework for Fuzzy rule-Based Cognitive Maps. In C. Zhang, H. W. Guesgen & W. K. Yeap (Eds.), PRICAI 2004: Trends in Artificial Intelligence (8th Pacific Rim International Conference on Artificial Intelligence: Auckland, New Zealand, August 2004 Proceedings) (1 ed., pp. 454-463). Berlin/ Heidelberg: Springer.

37. Khor, S. W., & Khan, M. S. (2003, 10-12 December 2003). Scenario Planning Using Fuzzy Cognitive Maps. Paper presented at the ANZIIS 8th Australian and New Zealand Intelligent Information Systems Conference, Sydney.

38. Kosko, B. (1986). Fuzzy Cognitive Maps. International Journal of Man-Machine Studies, 65-75.

39. Kosko, B. (1988). Hidden Patterns in Combined and Adaptive Knowledge Networks. International Journal of Approximate Reasoning, 2, 377-393.

40. Kosko, B. (1992). Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ: Prentice-Hall.

41. Kosko, B. (1997). Fuzzy Engineering. California: University of Southern California: Prentice Hall International, Inc.

42. Koulouriotis, D. E., Diakoulakis, I. E., & Emiris, D. M. (2001). Learning Fuzzy Cognitive Maps using Evolution Strategies: a Novel Schema for Modeling and Simulating High-Level Behavior. Paper presented at the IEEE Congress on Evolutionary Computation (CEC2001).

43. Kuosa, T. (2009). Towards the Dynamic Paradigm of Futures Research: How to Grasp a Complex Futures Problem with Multiple Phases and Multiple methods. PhD thesis (Series A-8: 2009), Finland.  

44. Laszlo, E., Artigiani, R., & Csanyi, V. (1996). Changing Visions: Human Cognitive Maps: Past, Present, and Future (Praeger Studies on the 21st Century). Westport, Connecticut: Praeger

45. Leedy, P., & Ormrod, F. (2001). Practical research: Planning and design (6th ed.). New Jersey: Pearson Education Inc.

46. Major, E., & Cordey-Hayes, M. (2000). Knowledge Translation: A new perspective on knowledge transfer and foresight. The Journal of Future Studies, Strategic Thinking and Policy, 2(4), 411-423.

47. Martin, B. R. (1995). Foresight in science and technology. Technology analysis & strategic management, 7(2).

48. Melkas, H., & Uotila, T. (2007, November 9-11, 2007). Quality of Data, Information and Knowledge in Technology Foresight Processes. Paper presented at the 12th International Conference on Information Quality (ICIQ), MIT, Cambridge, MA, USA.

49. Miles, L., & Keenan, M. (2002, 8-12 December 2003). Practical Guide to Regional Foresight in United Kingdom. Paper presented at the Office for Official Publications of the European Communities, Luxemburg.

50. Miller, J. (1999). Foresight ICT report. Foresight sector working group: Information and communications Technology, from http://www.dst.gov.za/publications-policies/foresight-reports/documents/FORESIGHT%20ICT%20REPORT.pdf/view

51. Montello, D. R. (2002). Cognitive Map-Design Research in the Twentieth Century: Theoretical and Empirical Approaches. Cartography and Geographic Information Science, 29, 283-304.

52. Noblit, G. W., & Hare, R. D. (1988). Meta-Ethnography: Synthesizing Qualitative Studies (Qualitative Research Methods). Newbury Park, CA: Sage Publications, Inc.

53. Özesmi, U. (1999, 23–25 June 1999). Modeling ecosystems from local perspectives: fuzzy cognitive maps of the Kizilirmak Delta wetlands in Turkey. Paper presented at the 1999 World Conference on Natural Resource Modelling, Halifax, NS, Canada.

54. Özesmi, U., & Özesmi, S. L. (2004). Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach. Ecological Modelling, 176(2004), 43–64.

55. Palmquist, R. B. (1984). Estimating the Demand for the Characteristics of Housing. The Review of Economics and Statistics, 66(3), 394-404

56. Papageorgiou, E., Stylios, C. D., & Groumpos, P. P. (2003). Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule. Paper presented at the Australian Conference on Artificial Intelligence, Australia.

57. Papageorgiou, E., Stylios, C. D., & Groumpos, P. P. (2004). Active Hebbian Learning Algorithm to Train Fuzzy Cognitive Maps. International Journal of Approximate Reasoning, 37(3), 219-249.

58. Parsopoulos, K. E., Papageorgiou, E. I., Groumpos, P. P., & Vrahatis, M. N. (2003). A First Study of Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization. Paper presented at the IEEE 2003 Congress on Evolutionary Computation.

59. Pirttimäki, A. (2006). Foresight in a Research and Technology Organization. Master’s Thesis, HELSINKI UNIVERSITY OF TECHNOLOGY, Department of Electrical and Communications Engineering, Master’s Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology.  

60. Polak, F. L. (1973). The image of the future (1st edition ed.): The Jossey-Bass/ Elsevier international series.

61. Popper, R. (2007). The Foresight Process. Colombia: COLCIENCIAS.

62. Popper, R. (2008a). Foresight Methodology. In The Handbook of Technology Foresight (pp. 44-88), ed. Georghiou, L., Cassingena, J., Keenan, M., Miles, I. and Popper, R, Cheltenham: Edward Elgar.

63. Popper, R. (2008b). Foresight Methodology: an overview and more. Germany: Manchester Institute of Innovation Research, Institute for research information and quality assurance.

64. Rader, M. (2003). Review and analysis of national foresight, first report on review and analysis of national foresight report on findings on IST from eight selected national foresight exercises: FISTRA-Thematic Network-IST.

65. Reger, G. (2001). Technology Foresight in Companies: From an Indicator to a Network and Process Perspective. Technology Analysis and Strategic Management, 13(4), 533-553(521).

66. Reger, G. (2006). Technologie-Früherkennung: Organisation und Prozess. Quantensprünge in der Entwicklung erfolgreich managen (pp. 303–330). Management von Innovation und Risiko, ed. Gassmann, O. and Kobe C., Berlin: Springer.

67. Roberts, F. S. (1976). The questionnaire method. In R. Axelrod (Ed.), Structure of Decision: The Cognitive Maps of Political Elites (pp. 333–342). Princeton, New Jersey: Princeton University Press.

68. Roy, D. (2011). Strategic Foresight and Porter’s Five Forces: Towards a synthesis (pp. 22-35), GRIN Verlag, ISBN: 978-3-640-90247.

69. Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation: McGraw-Hill.

70. Salmenkaita, J. P., & Salo, A. (2004). Emergent Foresight Processes: Industrial Activities in Wireless Communications. Technological Foresighting and Social Change, 71(9), 897-912.

71. Samsonovich, A. V., & Ascoli, G. A. (2008). Computing semantics of preference with a semantic cognitive map of natural language: Application to mood sensing from text. Paper presented at the Multidisciplinary Workshop on Advances in Preference Handling, Papers from the 2008 AAAI Workshop, AAAI Technical Report WS-08-09, Menlo Park.

72. Santo, M. d. M., Coelho, G. M., Santos, D. M. d., & Filho, L. F. (2006). Text mining as a valuable tool in foresight exercises: A study on nanotechnology. Technological Forecasting & Social Change, 73(2006), 1013 – 1027.

73. Saritas, O., Taymaz, E., & Tumer, T. (2006). Vision  2023: Turkey’s national  technology  foresight program:  A  contextualist  description and  analysis: Economic  Research  Center  Middle  East  Technical University. Retreived  from http://www.erc.metu.edu.tr/menu/series06/0601.pdf.

74. Scearce, D., Fulton, K., & GBN. (2005). What If? : The Art of Scenario Thinking for Nonprofits Global Business Network (GBN).

75. Schneider, M., Shnaider, E., Kandel, A., & Chew, G. (1998). Automatic construction of FCMs. Fuzzy Sets System, 93, 161– 172.

76. Siau, K., & Long, Y. (2005). Synthesizing e-government stage models - a meta-synthesis based on meta-ethnography approach. Industrial Management & Data, 105(4), 443-458.

77. Stach, W., Kurgan, L., & Pedrycz, W. (2005). A Survey of Fuzzy Cognitive Map Learning Methods. Paper presented at the Issues in Soft Computing: Theory and Applications.

78. Stach, W., Kurgan, L., Pedrycz, W., & Reformat, M. (2005). Genetic Learning of Fuzzy Cognitive Maps. Fuzzy Sets and Systems, 153(3), 371-401.

79. Sternberg, R. J. (2011). Cognitive Psychology (6 edition ed.): Wadsworth Publishing.

80. Stowell, M. (1995). Technology Foresight.

81. Styblinski, M. A., & Meyer, B. D. (1988). Fuzzy cognitive maps, signal flow graphs, and qualitative circuit analysis. Paper presented at the 2nd IEEE International Conference on Neural Networks (ICNN-87), San Diego, CA.

82. Stylios, C. D., & Groumpos, P. P. (2000). Fuzzy Cognitive Map in Modeling Supervisory Control Systems. Journal of Intelligent and Fuzzy Systems, 8(2), 83-98.

83. Taber, R. (1991). Knowledge Processing with Fuzzy Cognitive Maps. Expert systems with applications, 2(1), 83-87.

84. Taber, R., Yager, R. R., & Helgason, C. M. (2007). Quantization Effects on the Equilibrium Behavior of Combined Fuzzy Cognitive Maps. International journal of intelligent systems, 22(2), 181.

85. Taber, W., & Siegel, M. (1987). Estimation of Experts’ Weights Using Fuzzy Cognitive Maps. IEEE International Conference on Neural Networks, 319-326.

86. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189-208.

87. UNIDO. (2005a). UNIDO Technology Foresight Manual: Organization and Methods, Volume1. Vienna: United Nations Industrial Development Organization.

88. UNIDO. (2005b). UNIDO Technology Foresight Manual: Organization and Methods, Volume2. Vienna: United Nations Industrial Development Organization.

89. Vazquez, A. (2002). A Balanced Differential Learning algorithm in Fuzzy Cognitive Maps (Technical Report). Universitat Politecnica de Catalunya (UPC): Departament de Llenguatges I Sistemes Informatics.

90. Voros, J. (2003). A generic foresight process framework. Foresight, 5(3), 10-21.

91. Walonick, D. S. (2003). An Overview of Forecasting Methodology. Bloomington, MN: StatPac Inc.

92. Wilson, F. R., Pan, W., & Schumsky, D. A. (2012). Recalculation of the critical values for Lawshe’s content validity ratio. Measurement and Evaluation in Counseling and Development, 45(3), 197-210.

93. Wrightson, M. T. (1976). The documentary coding method. In R. Axelrod (Ed.), Structure of Decision: The Cognitive Maps of Political Elites (pp. 291–332). Princeton, New Jersey: Princeton